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Abstract

Tracking moving objects in video sequences is a task that emerges in various fields
of study: video analysis, computer vision, biomedical systems etc. In the last decade,
special attention has been drawn to problems concerning tracking in real-world en-
vironments, where moving objects do not obey any afore-known constraints about
their nature and motion or the scenes they are moving in. Apart from the existence
of noise and environmental changes, many problems are also concerned, due to
background texture, complicated object motion, and deformable and/or articulated
objects, changing their shape while moving along time. Another phenomenon in
natural sequences is the appearance of occlusions between different objects, whose
handling requires motion information and, in some cases, additional constraints.
In this work, we revisit one of the most known active contours, the Snakes, and
we propose a motion-based utilization of it, aiming at successful handling of the
previously mentioned problems. The use of the object motion history and first or-
der statistical measurements of it, provide us with information for the extraction
of uncertainty regions, a kind of shape prior knowledge w.r.t. the allowed object
deformations. This constraining also makes the proposed method efficient, handling
the trade-off between accuracy and computation complexity. The energy minimiza-
tion is approximated by a force-based approach inside the extracted uncertainty
regions, and the weights of the total snake energy function are automatically es-
timated as respective weights in the resulting evolution force. Finally, in order to
handle background complexity and partial occlusion cases, we introduce two rules,
according to which the moving object region is correctly separated from the back-
ground, whereas the occluded boundaries are estimated according to the object’s
expected shape. To verify the performance of the proposed method, some experi-
mental results are included, concerning different cases of object tracking, indoors
and outdoors, with rigid and deformable objects, noisy and textured backgrounds,
as well as appearance of occlusions.
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1 Introduction

This work addresses the problem of object contour modeling and tracking in
natural video sequences. Specifically, given a video stream in which a known
object of interest is in motion, the goal is to track the object’s silhouette
across time varying images. Applications abound in computer vision, video
processing, including video analysis and understanding, object-based coding,
content-based retrieval, remote surveillance, object recognition, as well as var-
ious biomedical problems, such as human organ motion analysis and tracking.
According to the application examined, object tracking includes a number of
problems that emerge, making its successful performance a very challenging
task, especially regarding its generality and its independence from initial con-
straints. Moreover, during the last decade, object tracking has become one
of the most important tasks, due to the information that new technologies
require. A representative example of these technologies, are the MPEG-4 and
MPEG-7 standards for video coding, according to which object localization
along time is needed, in order to separate the front from the background, and
handle them separately. Contrary to the MPEG-7 standard and many other
applications, such as surveillance for security systems, MPEG-4 and a wide
variety of applications require the exact contours of the moving objects, for
shape description and recognition purposes. In this framework, and depend-
ing on the examined application, many approaches have been proposed in the
literature, focusing either in the highest accuracy, or the lowest computational
complexity. A great category of these approaches is the deformable templates
[12] called active contours, that have come up and been drawn special atten-
tion, due to their performance in various problems, such as image and motion
segmentation [4,14,3,20], object tracking [22,21,27,5] and, similarly to these
approaches, audiovisual speech recognition.
Active contours were first introduced by Kass et al. in 1988, with a model called
Snake [13], and since then many researchers have proposed various modifica-
tions of it, in order to apply it to edge detection, shape modeling and object
tracking problems, under different constraints. However, many problems con-
cerning these models arise, due to strong existence of noise, mostly in natural
cluttered sequences [26], the requirement of an appropriate shape initializa-
tion [28] and parameter tuning [19]. Apart from these problems which are met
due to the definition of the snake models, and thus can be considered as obvi-
ous and well known, there are also some cases that are not so far handled by
Snakes: (a) the performance of snakes in sequences with complex backgrounds,
i.e textured backgrounds containing strong edges close to the moving object
boundaries, and (b) problems met when the desired moving objects get oc-
cluded by obstacles, which may be static or moving as well. These are mainly
the reasons why many researchers have proposed other active contour models
[22,11,20], utilizing region-based information, such as motion, color and tex-
ture, stochastic approaches and appropriate shape constraints [23].
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In this work we focus on the above mentioned problems, i.e existence of noise,
background complexity and occlusion handling, with a modified snake model
which utilizes the object’s motion history. Using the snake, which is a lin-
ear and thus computationally inexpensive model, and first order statistics, we
try to balance between the computational cost of the proposed method, and
its accuracy. The latter is needed, mainly due to some time-consuming mor-
phological operations applied in each frame of the examined sequence. The
proposed model is relatively robust to parameter tuning, while the required
initialization of the snake in each frame is automatically extracted, along with
a narrow band around it, in which the final solution (object contour) is lo-
cated. Thus, the proposed method consists of three main steps: (a) the frame
pre-processing, using a morphological filter, and the extraction of a morpho-
logical modified image gradient, (b) the extraction of the snake initialization
and its “uncertainty regions”, in which the final solution is located, and (c) the
snake energy minimization procedure, which is approximated by a force-based
curve evolution approach, inside the extracted uncertainty regions. Finally, a
motion estimation scheme is used to help handling problems related to object
occlusion.
Special attention has been given to the accuracy of the proposed approach,
resulting in efficient solutions to a variety of applications: cases involving dif-
ferent classes of objects and object movements in natural sequences, where
the amount of noise is not known, backgrounds that are highly textured, and
moving objects that get successively occluded.

2 Snake Model

Snakes are edge-based models widely used for object shape modeling, in single
images, and for tracking, in image sequences. So far, they have been success-
fully applied to problems where shape prototypes of the desired objects are
given. In general, snakes concern model and image data analysis, through the
definition of a linear energy function and a set of regularization parameters.
This energy function consists of two parts: (a) the data-driven component
(external energy), which depends on the image data according to a chosen
criterion and (b) the smoothness-driven one (internal energy), which enforces
smoothness along the snake. The goal is to minimize the total snake energy;
this is achieved iteratively, after considering an initial estimate for the object
shape (prototype). Once such an appropriate initialization is specified, the
snake can converge to the nearby energy minimum, using gradient descent
techniques.
According to the above formulation, a snake is modeled as being able to de-
form elastically, but any deformation increases its internal energy causing a
“restitution” force, which tries to bring it back to its original shape. At the
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same time, the snake is immersed in an energy field (created by the examined
image), which causes a force acting on the snake. These two forces balance
each other and the contour actively adjusts its shape and position until it
reaches a local minimum of its total energy.
Following the definition of the snakes and the general idea they adopt, many
problems arise, especially when examining cluttered natural sequences. The
first concerns the snake energy function and the snake’s convergence accord-
ing to the energy minimization procedure: (a) there is a set of regularization
parameters, used as weights in the total function, that need to be set in appro-
priate values, (b) an appropriate snake initialization around the desired object
has to be defined manually, (c) the object boundaries have to be distinct, that
is the respective edges have to be strong, and the background has to be rel-
atively smooth, so that the energy minimization procedure is not trapped in
undesirable local minima (edges) other than the object boundaries. These re-
quirements are very difficult to be met in cluttered natural sequences, where
weak object edges, the existence of noise, highly textured background or strong
and persistent (along the time) edges close to the desirable object boundaries,
are common and very frequent phenomena. Moreover, in real-world scenes, it
often happens that a moving object of interest gets successively occluded by
another static or moving object. In these cases, there is lack of necessary edge
information, and thus snake models cannot be efficiently applied, without the
exploitation of an appropriate shape prior knowledge.
Let us consider a snake representing a curve defined by a position vector
X(p) = (x(p), y(p)) on the image plane, and is generally parameterized by p,
0 ≤ p ≤ P . The total energy function of the snake Esnake, is then a weighted
summation of an internal energy factor Eint, corresponding to the summa-
tion of a bending and a stretching energy term, and an external energy factor
Eext, which denotes how the snake evolves according to the examined image
features:

Esnake = a · Eint + b · Eext, Eint =

P
∫

0

eint(p)dp, Eext =

P
∫

0

eext(p)dp, (1)

where eint(p) and eext(p) are the respective internal and external energy terms
defined for each point p of the curve, whereas a and b are normalization pa-
rameters.
For the internal energy Eint, a variety of definitions have been proposed, ac-
cording to the examined application; indicatively three approaches are men-
tioned: the B-snake [6], where the curve is approximated by B-spline polyno-
mials, the affine-invariant (AI-) snake [10] and the curvature-based snake [24]
models. On the contrary, in most of the approaches, the external energy term
at each point p is generally defined as [10]:

eext(p) = 1 − |∇Gσ∗I(x(p), y(p))| · |g(p) · n(p)|, (2)
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where |∇Gσ∗I(x(p), y(p))| (Gaussian-of-Laplacian) denotes the magnitude of
the gradient of the image I (I(x, y) ∈ [0, 1]) convolved with a gaussian filter,
of variance σ at point (x(p), y(p)), corresponding to the curve point p. The
unit vectors g(p) and n(p) denote the image gradient direction and the normal
vector of the snake at point p, respectively.
The definition of the external energy term, given in (2), is supposed to have the
following effect: smooth regions of the examined image I, where its gradient
has relatively low values, produce external energy values close to 1, whereas
image edges produce external energy values close to 0. In this sense, the min-
imization procedure of the total energy function, forces the snake towards the
edges closer to its initialization. This definition denotes that (a) the regions
close to object boundaries must be smooth without significant edges and noise,
that could create undesired minima, (b) if the background is noisy, then an
appropriate value for the parameter σ of the gaussian filter must be manually
chosen. These are mainly the reasons why it is not easy to use this definition
for the external energy in natural cluttered sequences.

2.1 Internal Energy Definition

In this work, we adopt a snake model that utilizes the curvature Ksnake [19,24]
and the point density distribution DVsnake:

Ksnake =
ẋ · ÿ − ẍ · ẏ

(ẋ2 + ẏ2)
3
2

, DVsnake =
√

ẋ2 + ẏ2, (3)

assuming that that the snake points are not equally spaced along the curve.
The first and second derivatives of (x, y) define the velocity and the accelera-
tion, along the curve:

Ẋ = [ẋ, ẏ] = [
dx

dp
,
dy

dp
] , Ẍ = [ẍ, ÿ] = [

d2x

dp2
,
d2y

dp2
], (4)

and for each point p of the snake, they are calculated in terms of the neigh-
boring points p − 1 and p + 1:

ẋ(p) = x(p + 1) − x(p − 1), (5)

ẏ(p) = y(p + 1) − y(p − 1), (6)

ẍ(p) = x(p − 1) − 2x(p) + x(p + 1), (7)

ÿ(p) = y(p − 1) − 2x(p) + y(p + 1) (8)
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The curvature and the point density distribution functions are not affine-
invariant, as can be easily proved, and can uniquely define a curve in specific
time instances, whereas curvature denotes whether a part of a curve is convex
(Ksnake > 0) or concave (Ksnake < 0). In our model, the curvature function
is used to provide us with a local smoothness constraint, since values of K
close to 0 denote smooth parts of the snake, but also a similarity criterion in
the tracking approach as described in Section 3. The point density function is
the snake local elasticity constraint, since it represents the distances between
neighboring points along the snake. From eqs. (3) and (4) it is DVsnake = |Ẋ|.
The internal energy of the proposed snake model is then,

eint(p) = |Ksnake(p)| + DVsnake(p), (9)

where | · | denotes the magnitude sign. Thus, the minimization of the internal
energy forces the snake into a smoother form.

2.2 External Energy Definition

Regarding the external energy component, we use an alternative definition,
in order to deal with noise, textured backgrounds and edges close to object
boundaries. The proposed procedure extracts an image-based component, af-
ter appropriately pre-smoothing the examined image, in order to eliminate
randomly distributed noise, and it provides a good alternative way for over-
coming the problems that appear in definition (2); the proposed method uses
various morphological operations that lead to a modified image gradient. The
use of morphological operations may also eliminate object boundary edges,
in cases that some of these edges are not well distinguishable, and thus force
the snake into a more complicated form than the desired one. This problem is
overcome with the use of the internal energy constraint, which does not allow
great local deformations of the snake. Moreover, some background edges may
remain even after the morphological procedures are applied, but this problem
is overcome with the use of further constraints, as described in 3.2.3.
The first step is the image pre-smoothing with a non-linear morphological
filter, a so-called ASF (Alternating Sequential Filter). This filter is based on
morphological area opening (◦) and closing (•) operations with structure ele-
ments of increasing scale [15]. More specifically, if Si, i=1,...,4, is the 2-pixel
connected line segments oriented at 90(i-1) degrees, and nSi is the corre-
sponding (n+1)-pixel elements of size n = 1, 2, 3, ...., then the openings αn

and closings βn that make up the filter, for an image I, are,

αn(I)(x, y) = max
i∈[1,4]

[I ◦ nSi(x, y)] , βn(I)(x, y) = min
i∈[1,4]

[I • nSi(x, y)](10)
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Fig. 1. Structure elements of increasing scale (n = 1, 2, 3) for ASF construction

(a) (b) (c)

Fig. 2. Frame pre-smoothing with the proposed Alternating Sequential Filter:
(a)original frame, (b) filtered frame with structure elements of 4 orientations, and
(c) filtered frame with structure elements of 8 orientations.

Then the filtered image IASF is obtained by the following cascade,

IASF = βnαn...β2α2β1α1 (11)

In our method, we use that filter to preserve the line-type features (edges) of
each frame of a sequence, without smoothing them, which cannot be achieved
with, e.g., median filtering. Fig. 1 illustrates an example of structure elements
of different orientations (0o, 90o, 180o and 270o) and increasing scale (3x3, 5x5
and 7x7), used for the construction of the ASF utilized in our implementation.
Also, Fig. 2 illustrates the performance of image smoothing using the proposed
ASF: (a) is the original image and (b) is the filtered image; it can be clearly
seen that a great amount of clutter is eliminated. For a better implementation
of the ASF, we propose the use of structure elements of 8 orientations, i.e 0o,
45o 90o, 135o, 180o, 225o, 270o and 315o, in order to preserve edges in a variety
of orientations. The result of this implementation is illustrated in Fig. 2(c).
After filtering each frame of the examined sequence, we follow a procedure

aiming at preserving the most important regions, and thus the most important
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h/2

grayscale
reconstruction

subtraction

thresholding

J

h

I

I-h binary markers

extracted domes

Fig. 3. Binary markers extraction for modified gradient calculation: subtraction of
a constant h from the initial image, grayscale reconstruction opening, local maxima
of the image, and binary markers extraction using h/2 as a threshold.

edges of the frame. This procedure is a part of the watershed transformation
[16], and involves the extraction of binary markers of the most important
regions. These markers are appropriately combined with the image gradient
so that its variations, due to noise or weak edges, will be eliminated.
More specifically, as shown in Fig. 3, we subtract a constant h from the filtered
image IASF , and we apply a morphological grayscale reconstruction opening
between IASF and IASF − h. The result of this procedure is subtracted from
IASF , and what we obtain is an image representing the local maxima of IASF ;
then, the most important maxima are obtained by thresholding this image
with h/2. The same procedure is followed to extract the binary markers that
represent the image most important minima; combining the binary marker
images into one, a geodesic erosion reconstruction of image gradient G is
computed,

Gm = lim
k→∞

[(m 	 B)
∨

G](k) (12)

where m is the binary markers image, B is a symmetric structuring element
of radius 1, k is the number of the successive operations, and “	” and “

∨

”
denote the flat erosion and supremum operations, respectively [17].
In our implementation, we normalize the image intensity in the interval [0, 1].
Thus, a reasonable choice of the constant h is 0.1 ≤ h ≤ 0.3; it is experimen-
tally proved that the value of h is not crucial for the extraction of the image
modified gradient. It must be also noted that instead of the gradient ∇IASF ,
we use the morphological image gradient, defined as G = [s⊕IASF ]−[s	IASF ],
where ⊕ and 	 are the dilation and erosion operations, and s is a 3× 3 struc-
ture element.
After the modified image gradient Gm is extracted, the external snake energy
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(a) (b)

Fig. 4. Differences between (a) the image gradient ∇G(σ=1)∗I and (b) the proposed
modified morphological image gradient Gm.

is defined as,

eext(p) = 1 − G2
m(p) · |g

m
(p) · n(p)|, (13)

where g
m

(p) and n(p) denote the modified image gradient unit vector and the
normal vector of the snake at the point p, respectively. Fig. 4 illustrates the
differences between (a) the image gradient ∇Gσ∗I (σ = 1) of eq. (2) and (b)
the proposed modified gradient Gm of eq. (13), and it can be clearly seen that
a great amount of noise and weak edges is eliminated.

3 Proposed Tracking Method

In object tracking, the goal is to track object’s contour along time; this ac-
tually means that, for each frame of a video sequence, we aim at separating
the object from the background. During the last decade, many approaches for
contour tracking have been proposed in the literature, which can be roughly
categorized in three main classes: (a) edge-based methods [11], utilizing the
edge information of the examined images, (b) region-based methods [18], that
rely on the information obtained by region features (color, texture etc.), and
(c) combinations of edge and region-based methods [22], which exploit and
combine the advantages of the previous two classes, formulating either ac-
tive contours or geometric alternatives of them, such as the Level-Set theory.
Amongst these methods, there are approaches relying on grouping motion in-
formation along time [18], introducing additional constraints in terms of high
level semantic knowledge [7], or utilizing prior knowledge for the desired ob-
ject’s shape [23].
The issue of object tracking in natural and cluttered sequences, involves var-
ious problems, especially when its most general confrontation is needed. The
generality of a method is one of the most important goals, which means that we
have to deal with as few as possible initial constraints, or even make the track-
ing problem independent from initial conditions/constraints. The difficulties
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that usually arise in real-world scenes are: (a) non-rigid (or articulated) moving
objects, (b) moving objects with complicated contours, (c) object motions that
are not simple translations, but also involve rotations, objects approaching or
drawing away from the shooting camera (or camera zooming), (d) sequences
with highly textured background, (e) existence of noise or abrupt/gradual en-
vironmental (external) changes, such as external lighting changes, (f) moving
objects that get successively occluded by obstacles, that can be either static
or moving.
In this Section, we describe the proposed tracking method that utilizes the
snake model defined in the previous Section, and exploits the results of a mo-
tion estimation scheme proposed in [2]. Our method consists of three main
steps: (a) estimation of the snake’s initial position in frame I + 1, given its
position in the previous frame I, using a robust motion estimation technique,
(b) definition of a narrow band around the initialization, in which the object
contour is supposed to be located, and (c) estimation of the contour’s final
position in frame I + 1. The narrow band around the object is called “uncer-
tainty region”, and this term is used to account for the uncertainty factor that
is involved in estimating the shape and the position of a moving object in a
scene. In this sense, the problem of finding the correct contour is constrained
in a small image region, which allows us to reduce the computational cost.

3.1 Snake Initialization and Uncertainty Regions Extraction

Let us consider the contour C(I) of the desired object in frame I of a video
sequence, defined by P ordered points on the image plane, in terms of complex
numbers, i.e

C(I) = [C(I)(p) = x(I)(p) + j · y(I)(p) | p ∈ P ], (14)

where X(I)(p) = (x(I)(p), y(I)(p)) is the position vector of each point p ∈ P of
the contour. We use the term “observed motion”, dc, to define the motion of
the contour, obtained by a motion estimation scheme, that is expected to give
us the position of the contour in the next frame I + 1:

d(I+1)
c = [d(I+1)

c (p) | p ∈ P ] = [MF (I,I+1)(x(p), y(p)) | p ∈ P ], (15)

where MF (I,I+1)(x(p), y(p)) is the motion vector between I and I +1, at point
(x(p), y(p)), computed using the motion estimation scheme proposed by Black
et al. [2].
In our work we utilize the specific motion estimation technique, considering it
as an efficient way to overcome the common problems that arise in estimating
the displacements or the optical flow in video streams. The most important
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problem that is handled by this technique is the trade-off between motion field
over-smoothing and noise sensitivity. More specifically, the method proposed
in [2] (a) eliminates noisy motion estimates, that cannot give us the motion
information we need, (b) handles motion estimates’ over-smoothing, which
leads to smooth but not actual motion information, and (c) provides smooth
motion fields on edges, which are the most informative features; this can lead
to successful separation between the moving front and the background, or
between two objects moving close to each other. The latter advantage is ex-
ploited in our work, in order to estimate the desired object contour in textured
backgrounds and detect its possible occlusions.
The observed motion d(I+1)

c (p) of each contour point C (I)(p) is different from
its actual motion, which is calculated after the contour new position is esti-
mated in the next frame I + 1. Thus, we define the “instant motion” of the
contour between the frames I and I + 1 as,

m(I+1)
c = [m(I+1)

c (p) | p ∈ P ] = [X (I+1)(p) − X(I)(p) | p ∈ P ], (16)

where X(·)(p) represents the position vector corresponding to the snake point
p. This equation represents the displacement of snake final solution between
the successive frames I and I + 1, i.e the difference between the respective
position vectors, after the object contour in the next frame is estimated.
The snake initialization C

(I+1)
init in the next frame I + 1 is defined in terms of

the observed motion,

C
(I+1)
init = C(I) + d(I+1)

c (17)

Fig. 5 illustrates the difference between the observed motion, according to
the obtained motion field, of a contour point, and its instant motion. Snake
initializations and the vectors of the observed motion are shown in dotted
form, whereas the final positions of the contour and the instant motions are
illustrated in solid line. The circled points represent the point p at its ini-
tial position in each frame, whereas the filled circles (dots) represent its final
position, estimated according to the procedure described in the following sub-
sections.
In order to form the uncertainty regions around the snake initialization in

each frame of the examined sequence, which actually represents the area in
which possible contour deformations can occur, we exploit the contour motion
history, obtained by the contour instant motions in the L previous frames.
In this way, we form the “expected” contour motion m̄(I+1)

c , obtained as the
contour’s mean motion in the previous L frames,

m̄(I+1)
c = [m̄(I+1)

c (p) | p ∈ P ] = [
1

L

I−1
∑

i=I−L

m(i+1)
c (p) | p ∈ P ] (18)
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Fig. 5. Differences between a contour observed motion and its instant motion in
three successive time instances.

The difference between the expected m̄(I+1)
c and the observed d(I+1)

c motion,
is used to formulate the uncertainty region, i.e the region where the accept-
able deformations of the snake should be located. In particular, the expected
solution (object boundaries), for the next frame I + 1, is located in a narrow

band around the snake initialization C
(I+1)
init , whose width varies for each point

p, and is equal to 2 · sd(I+1)(p) at each side of it (in the normal direction to

the curve C
(I+1)
init ), where

sd(I+1)(p) = |m̄(I+1)
c (p) − d(I+1)

c (p)| (19)

In the above formulation we adopt the idea that the object contour is more
likely to move in the same way, as it has been moving in the previous L frames
of the sequence. In cases where the expected and observed contour positions
coincide, there is clear evidence about the predicted contour position and the
uncertainty region is narrowed. Thus, the final solution is taken as the initial
one; however, exact match of observed and expected contour position is prac-
tically impossible, due to computational inaccuracies.
High values of sd(I+1)(·) denote either a problem in the estimation of the ob-
served contour position, or an abrupt change in the velocity of the tracked
object, compared to its mean velocity in the previous frames. In both cases,
the uncertainty about the predicted contour’s initial position is high and the
corresponding uncertainty regions are increased.
Fig. fig16 illustrates the proposed approach in steps, in the case of face track-
ing. Figs. 6(a) and (b) present two successive frames of a face sequence and
the respective contours. Fig. 6(c) presents the amplitude of the computed de-
viation (in pixels) between the observed and the expected contour position.
Based on this deviation, the uncertainty regions are then formed as shown in
Fig. 6(d).
The exact location of the object contour (final solution) in the frame I + 1 is

12



(a) (b)

(c) (d)

Fig. 6. The proposed tracking approach in steps. (a)-(b) Two successive frames of a
face sequence and the respective contours. (c) Amplitude of the deviation between the
observed and the expected contour positions, leading to (d) the uncertainty regions
of the curve.

obtained by solving the following equations:

C(I+1) = arg min
r∈R

[w1(D
(r)
K + D

(r)
DV ) + w2 · E

(r)
ext ], (20)

D
(r)
K =

∑

p∈P

[K
(C

(I)
)
(p) − K(r)(p)]2, (21)

D
(r)
DV =

∑

p∈P

[DV
(C

(I)
)
(p) − DV(r)(p)]2, (22)

E
(r)
ext =

∑

p∈P

[e
(r)
ext(p)] (23)

where K
(C

(I)
)
(p), K(r)(p) and DV

(C
(I)

)
(p), DV(r)(p) are the curvature and the

point density values of the contour C(I) and the curve r ∈ R at the point p,
respectively. R is the set of all possible curves r generated from the initializa-
tion C

(I+1)
init inside the extracted uncertainty region, and thus the minimization

of eq. (20) is actually a problem of picking out the correct curve. The param-
eters w1 and w2 represent the weights with which the energy-based terms of
eq. (20) participate in the minimization procedure (corresponding to a and b
of eq. (1)).
The above equations impose the requirement of the similarity between the
obtained solution and the contour estimated in the previous frame, in terms
of the smoothness and the elasticity of the snake, which constrains the snake’s
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evolution towards the object boundaries (external energy component).

3.2 Force-based Approach

The minimization of eq. (20) is a time-consuming procedure, since the number
of curves generated from the snake initialization, inside the extracted uncer-
tainty regions, is inhibitory for straightforward implementation. In this sub-
section we propose a force-based approximation of the minimization procedure
inside the extracted uncertainty regions.

3.2.1 Internal Forces

If n(I+1) = [n(I+1)(p)|p ∈ P ] and t(I+1) = [t(I+1)(p)|p ∈ P ] are the sets of

the normal and the tangential vectors of the snake initialization C
(I+1)
init in the

frame I + 1, respectively, we define the following forces:

Fd(p) = [DV(C(I)(p)) − DV
(C

(I+1)
init

(p))
] · t(I+1)(p), (24)

Fc(p) = [K(C(I)(p)) − K
(C

(I+1)
init

(p))
] · n(I+1)(p) (25)

The definition of these forces as being normal and tangential to the snake is
motivated by the fact that Fd corresponds to the distances between neighbor-
ing points along the snake, and thus it represents the elasticity force, whereas
Fc involves the curvature function, and thus represents the local deforma-
tion of the snake in its normal direction. Comparing these two forces with
eqs. (21) and (22), we actually propose two force-based shape similarity con-
straints, denoting that the snake should not greatly deform its shape along
time, corresponding to the snake internal energy components. In this sense,
if two neighboring points increase their distance during the snake deforma-
tion, a tangential force Fd is produced trying to bring them in their previous
positions. Also, if the newly estimated position of a point produces higher
or lower curvature value, i.e. the snake becomes less smooth locally, then a
restitution force Fc, normal to the snake at this site, tries to bring the shape
in its previous form.

3.2.2 External Force

Let us define gm,p(k), given by (26), be the modified image gradient function
of all pixels k = xk + j · yk that belong to the uncertainty region U, and lie on
the line segment that is defined by the normal direction of the curve C

(I+1)
init
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at point p,

gm,p(k) = [Gm(k) | (C
(I+1)
init (p) − k) · n(I+1)(p) = 1, k ∈ U] (26)

The use of this function, for every point of the snake, is a way to determine
the most salient edge pixel of the examined image I + 1, inside the extracted
uncertainty region, and thus indicate the possible object boundary pixels, in
the normal direction of the snake. In this sense, the maximum of this function
defines the direction of the snake external force, as follows,

k̃p = arg max
k

[gm,p(k)], (27)

sgnp =











+, if k̃p inside the area defined by C
(I+1)
init

−, otherwise
(28)

where sgnp denotes the sign/direction of the external force to be applied to

C
(I+1)
init (p). The external snake force for each point C

(I+1)
init (p) is then:

Fe(p) = sgnp · eext(p) · n(I+1)(p) (29)

This component is proportional to Gm and forces the snake to the salient
edges inside the extracted uncertainty region. Thus when this force is applied,
each point of the snake marches towards the object boundary edges, with a
step defined by the value of the respective external energy term eext(p). That
is, when p is far from an edge, it is eext(p) ' 1 and the snake marches with
constant “velocity”; otherwise, when p approaches an edge, eext(p) reduces
until it gets its minimum value (eext(p) ' 0), and the snake stops. If we
used the image gradient |∇Gσ∗I|, then the function (26) would contain a
great number of maxima and thus the direction of the external force would
probably lead to insufficient results. It must be also noted that the maximum
of the function gm,p for each point p of the snake, corresponds to the minimum
of the respective external energy term, according to eq. (13).
Although eq. (27) provides the most salient edge pixel in the normal direction
of the snake at each point p, there are cases that this pixel is not the desired
one, mainly due to four reasons:

• the ASF and the morphological operations, described in the previous Sec-
tion, may eliminate noise but also some of the edges on the object bound-
aries, in case they are not strong enough,

• even the proposed modified image gradient may contain background edges
close to the moving object, especially when these edges are strong and salient
along the time (and thus cannot be eliminated with spatiotemporal filters),
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• there are cases, not very usual in natural sequences, that both the moving
object and the background are so smooth and with similar intensities, that
the function gm,p in eq. (26) does not have any maxima, and

• there are cases that the moving object gets successively occluded by an
obstacle, that may be a static or a different moving object, and thus there
is loss of edge information for the occluded object region; in that case it is
likely that the maximum of gm,p (if p is an occluded point) will lie on the
boundary edge of the obstacle (which separates it from the moving object).

3.2.3 Rule-based Approach

In order to avoid the above mentioned problems, we use the information ob-
tained from the motion field. In the following, we describe a method that
separates the moving object from the background, detects possible occlusions
and handles them, by estimating the occluded parts of the object contour.
Without any loss of generality, let us suppose that the background is highly
textured and static, and the desired moving object gets successively hidden
behind a static obstacle. Then, for each point p of the snake, the maximum
k̃p = (x̃p, ỹp) of gm,p does not probably lie on the desired edge. Let kl = (xl, yl)
and km = (xm, ym) be the surrounding points of k̃p, on the line segment along
which gm,p is computed. Then, in order to accept k̃p as the desired maximum
(object boundary pixel), the three points k̃p, kl and km must obey the follow-
ing two rules/constraints:
(a) k̃p must divide that line segment in two parts: an immiscibly moving and
an immiscibly static one, that is



























MF (I,I+1)(kl) ' d(I+1)
c (p) and MF (I,I+1)(km) ' 0

or

MF (I,I+1)(kl) ' 0 and MF (I,I+1)(km) ' d(I+1)
c (p)



























. (30)

and
(b) k̃p must be a moving point with velocity close to d(I+1)

c (p), that is

MF (I,I+1)(k̃p) ' d(I+1)
c (p) (31)

Taking these constraints into consideration, we overcome cases that: (a) the
maximum is found in background (Fig. 7(a)): it is not a moving one and
does not separate two immiscible (according to motion) parts of the function
gm,p, (b) the maximum is found inside the moving object region (Fig. 7(b)):
although it is a moving one, it does not divide the function gm,p in such
two parts, (c) occlusion occurs and the maximum is on the occluding object
boundary (Fig. 7(c)): the maximum is not moving, although it makes the
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object area background

object area occlusion area

(a) (c)

object area background

object area occlusion area

(b) (d)

Fig. 7. Four different cases in which the three points k̃p, kl and km do not obey both
of the two rules for the separation of the moving object from the background or the
occluding obstacle.

region gm,p separation and (d) occlusion occurs and the maximum is in the
occluding object region (Fig. 7(d)): neither the maximum is moving, nor it
does such a separation.
If the above requirements are not met for the global maximum k̃p of the

function gm,p, at point p of the snake, we ignore it and continue searching
for a local maximum that obeys these constraints. In occlusion cases, no such
local maxima can be found and thus the external force is ignored, allowing the
occluded parts of the snake to deform locally according to the internal forces.
Fig. 8 illustrates detection of occlusion with the use of the above defined rules
that the local maximum k̃p, corresponding to a curve point p, must obey.
Finally, it should be noted that in occlusion cases, the more deformable a

moving object is, or the more an object gets occluded, the less accurate the
estimation of the occluded parts of its contour is. Moreover, when the desired
object is already partially occluded, for the hidden parts of it, instead of
the respective observed motion of eq. (15), we use the previously estimated
instant motion m(I)

c (eq. (16)) to initialize the snake in the next frame. Then
we compute the deviation as follows,

sd(I+1)(p) = m̄(I+1)
c (p) − m(I)

c (p) (32)
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no occlusion detected occlusion detected

area 1:
motion detected

area 2:
no motion detected

area 1:
motion detected

area 2:
no motion detected

static minimummoving minimum

Fig. 8. Detection of occlusion using the two rules of eqs. (30) and (31) for the local
maximum k̃p of the function gm,p for a point p of the snake. The plots represent the
function 1 − gm,p and thus k̃p are presented as local minima of the 1 − gm,p.

The latter is due to the obvious failure of the motion estimation scheme for the
occluded parts, since no region information (intensity) is available for them.

3.2.4 Force-based Approximation of the Energy Minimization Procedure

In the force-based approach, the snake initialization C
(I+I)
init marches towards

the object’s boundaries in the next frame I+1, due to the internal and external
forces applied to it. In this way, the minimization procedure of eq. (20) is
approximated in an iterative manner similar to the steepest descent approach
[8], as it is summarized below.
Let C(I+1),(ξ) be the estimated contour in the ξ-est iteration, in the next frame
I + 1; then the following equations hold:

C(I+1),(0) = C
(I+1)
init (33)

C(I+1),(ξ) = C(I+1),(ξ−1) + ∆C(ξ) (34)

∆C(ξ) = [C(I+1),(ξ−1)(p) + F
(ξ−1)
tot (p) | p ∈ P ] (35)

F
(ξ−1)
tot (p) = w1 · [F

(ξ−1)
c (p) + F

(ξ−1)
d (p)] + w2 · F

(ξ−1)
e (p), (36)

where F
(ξ−1)
d (p), F(ξ−1)

c (p) and F(ξ−1)
e (p) are estimated according to eqs. (24),

(25) and (29) respectively, on the basis of C(I+1),(ξ−1), instead of C
(I+1)
init . The

exponent (ξ−1) in the forces’ representations, denotes that they are calculated
in the ξ − 1 iteration, according to the form of the curve C(I+1),(ξ−1) (for the
internal forces), and its position on the image plane (for the external force).
The final solution C(I+1) in the next frame I + 1 is obtained when one of the
following criteria is satisfied:
(a) the weighted summation of the corresponding forces’ norms in the ξ-est
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iteration has lower value than the respected summation in the next iteration,
i.e.,

F (ξ)
τ < a · F (ξ+1)

τ , (37)

where

F (ξ)
τ = w1 · ( ‖

∑

p∈P

F(ξ)
c (p)‖ + ‖

∑

p∈P

F
(ξ)
d (p)‖ ) + w2 · ‖

∑

p∈P

F(ξ)
e (p)‖ (38)

where a is a positive constant in the range 0 < a < 1. When a is selected to
be close to one, then C(I+1) is more likely to correspond to a local minimum
solution; lower values of α increase the number of iterations and, therefore,
the execution time. The use of the uncertainty regions allows values of α get
close to 1.
(b) the maximum number of iterations is reached; in this case,

C(I+1) = C(I+1),(ξ̃), ξ̃ = arg min
ξ

[F (ξ)
τ ] (39)

It must be noted that the use of the proposed steepest descent approach
does not ensure that the final contour corresponds to the solution of eq. (20).
However, under the constraints we pose, even if C(I+1) corresponds to a local
minimum, it is close to the desired solution.

3.3 Weight Estimation

As mentioned in Section 2, snake models generally involve a set of regular-
ization parameters (parameters a and b in eq. (1)) taking part in the total
energy function. In our approach, we represent these parameters as w1 and
w2; they are the weights with which the internal and the external energy com-
ponents of eq. (20) contribute in the minimization procedure. These weights
are first calculated in the force-based implementation, in order to determine
the importance of each force term, and thus determine the snake deformation
according to (a) the snake elasticity and smoothness forces and (b) the force
depending on the examined frame features (edges).
In order to make our method more straightforward, we propose an efficient and
automatic estimation of these weights. Contrary to the energy minimization
procedure of common snakes, where these weights are crucial for the accuracy
of the obtained solutions, in our force-based method, w1 and w2 do not have to
take specific values, but values that indicate the relativity between the “inter-
nal” and “external” information we utilize. This is mainly due the fact that we
have constrained the problem (snake deformation) in a narrow band, i.e the
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uncertainty region, and thus the final solution cannot be far from the actual
object boundaries. Also, as mentioned in the force-based approach, although
it is not easy to theoretically prove that the snake in its final position will
correspond to the solution of the energy minimization, it is experimentally
shown that at least it is very close to (or probably coincides with) it.
For the weight w1 corresponding to internal force terms, it suffices to count
the snake zero-crossings, that is the points at which the curvature function
intersects the zero level. These points can determine how smooth the snake
locally is, and thus denote how reliably we can apply the internal forces. The
number of zero-crossings Zc of a snake C(I) = [C(I)(p)|p ∈ P ], in a frame I,
with curvature function KC(I) (eq. (3)) is calculated according to,

Zc =
∑

p∈P











1, if KC(I)(p) · KC(I)(p + 1) < 0

0, otherwise











. (40)

Regarding weight w2, corresponding to the external force component, we sim-
ply compute the summation m(ext,U) of the external energy values at all the
pixels q inside the extracted uncertainty region U:

m(ext,U) =
∑

q∈U

eext(q), (41)

In this sense, smooth uncertainty regions result to high values of m(ext,U),
whereas uncertainty regions that are textured or contain strong edges, other
than the object boundaries, result to significantly lower values of m(ext,U).
Thus, if the extracted uncertainty region is textured, the external force com-
ponent is assigned with lower weight, since it is considered as unreliable cri-
terion for the snake deformation.
Practically, in order to set w1 and w2 values, according to the above and tak-
ing into account the number of snake points and the uncertainty region area,
after extracting Zc and m(ext,U), we compute the quantities,

Ẑc =
Zc

P
, 0 ≤ Ẑc ≤ 1 (42)

where P is the number of all snake points, and

m̂(ext,U) =
m(ext,U)

Q
, 0 ≤ m̂(ext,U) ≤ 1 (43)

where Q is the number of all pixels inside the uncertainty region (q ∈ U), i.e.
the uncertainty region area.
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Fig. 9. Curvature and external energy terms. (a,d,g) different cases of contours
and background textures, (b,e,h) respective external energies visualization and (c,f,i)
respective curvature distributions

Thus, given the values of Ẑc and m̂(ext,U), the weights w1 and w2 are estimated
by,

w1 =
100

e5Ẑc

, w2 =
100

e5m̂(ext,U)
(44)

The factor 5, in the exponential parts of the denominators, is experimentally
found to give the desired values of w1 and w2, as Ẑc, m̂(ext,U) ∈ [0, 1]. Let us
now consider the examples of Fig. 9, where three objects of different shape
complexity are in motion in either textured or smooth backgrounds. Figs.
9(a,d,g) represent the original images along with the moving object contours,
Figs. 9(b,e,h) illustrate the proposed external energy components, whereas
Figs. 9(c,f,i) are the respective curvature function plots. Indicatively, in the
second example, the background is very smooth (Fig. 9(e)) and thus we es-
timate the external force with great reliability, but the aircraft’s contour is
complicated, which can be seen in the curvature plot, and thus the internal
forces are not reliable.
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3.4 Time-window L

In subsection 3.1 we described a method for the snake uncertainty region for-
mation, utilizing the motion history of the tracked contour. In the respective
eq. (18), it is denoted that these measurements involve the recent history of
the tracked contour, i.e. the number L of the previous frames. We usually
set L = 5 . . . 15, according to the object motion, that is, the “smoother” the
object motion is (almost constant velocity), the more informative a wide time-
window is, and thus we use higher value for L; otherwise, we should use the
very recent motion history, i.e a low value for L.
The question is what happens in the first frames of the examined sequence. In
the first frame, we consider that the contour position has been manually set,
whereas for the second frame we produce manually wide uncertainty regions.
Then in the next frames, the object contours may be estimated not as accu-
rately as we desire, but as time passes the motion history is getting “enriched”
(updated) and thus the solutions get better.

4 Experimental Results

In the experimental results we present in this Section, we focus on natural
sequences where very interesting cases can be encountered, due to the exis-
tence of noise, object deformations, complicated motions, and unpredictable
external conditions (such as lighting changes, temporal clutter etc.). Moreover,
cases with highly textured backgrounds and moving object partial occlusions
are also handled. The performance of the proposed approach was tested over
a large number of such sequences, and in this section we choose to illustrate
the most representative examples.
Fig. 10 illustrates the case of tracking a car, moving towards the shooting
camera. In this sequence, although the moving object is rigid, its silhouette is
getting deformed slowly along time, due to its motion projection on the image
plane. The background regions close to the object do not contain strong edges;
however, some edges on the object boundaries are weak (low values of image
gradient). As can be seen in (Fig. 10(a)), we assume that in the first frame
the object contour is not estimated with the desired accuracy, but as long as
motion history gets updated, the results are getting better.
Fig. 11 illustrates the tracking of the tail of a sperm whale. Object tracking in
this case is considered to be difficult, due to the highly textured background
and the strong clutter close to the desired object boundaries. The accuracy
of the obtained results is enhanced due to the frame pre-filtering and the
proposed modified image gradient. The results show that a very attractive
application of the proposed method would be the sperm whale identification,
based on its tail’s contour local formations, which is a task in marine biology
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science.
In Figs. 12 and 13 the case of a small moving object that gets partially oc-

cluded is presented. Fig. 12 illustrates some indicative results of the motion
estimation scheme [2] we utilize, and its ability to preserve smooth estimates
on the boundary between two different objects. We exploit this advantage to
track the finger nail in Fig. 13, efficiently separating the moving front from
the background. Due to the slow motion of the finger, accurate nail contours
are obtained, even in the frames where it is occluded by the obstacle (toy).
In the final example of Fig. 14, the case of a moving object that gets succes-
sively occluded is illustrated. The main problem in this case is the existence
of weak edges on the object boundaries, due to the shadowing effects and the
intensity similarity between the moving object region and the background,
which leads to inaccurate motion estimates. On the other hand, the desired
object is rigid, its motion is mainly translational (parallel to the camera’s
plane) and the obstacle’s “crucial” edge is strong enough to indicate that
occlusion occurs.

5 Conclusions and Further Work

In this paper we have presented a modified snake model assisted by rules,
aiming at tracking objects in natural sequences, where the amount of noise
is unknown, backgrounds may be highly textured, and partial object occlu-
sions may occur. The internal energy of the proposed snake model is given in
terms of two well known geometric characteristics, i.e the point density dis-
tribution (elasticity) and the curvature (smoothness) functions, whereas the
proposed external energy is given in terms of a modified morphological image
gradient. The object’s motion history, along with a robust motion estimation
scheme, provide the snake initializations for the next frames of the examined
sequence, as well as uncertainty regions around these initializations, indicating
the possible/allowable snake deformations. In this way, we constrain the con-
tour estimation problem in a small frame region, and we follow a force-based
approach to approximate the snake’s energy minimization procedure, avoiding
the point correspondence problem between two successive frames. Also, in or-
der to handle object occlusions, as well as backgrounds with strong edges close
to object boundaries, we propose a rule-based implementation of the proposed
tracking model, utilizing again the motion estimation scheme [2]. The indica-
tive experimental results we present illustrate the proposed method’s success,
when the afore mentioned problems occur.
Our future work focuses on tracking moving objects utilizing higher order
statistics, in order to deal with articulated motion of objects. Also, we are
currently investigating the estimation of force (energy) weights, in order to
establish a reliable relation between them.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. A moving car tracking in six (a,b,c,d,e,f) successive frames of a traffic
sequence. The background is relatively smooth close to car’s boundary, while the
car’s contour is not very complicated.

(a) (b) (c)

(d) (e) (f)

Fig. 11. A sperm whale tale tracking in six (a,b,c,d,e,f) successive frames of a traffic
sequence: an example of a very cluttered sequence with highly textured background.
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. Indicative motion estimation results for the tracking example of Fig. 13.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 13. Tracking a small rigid object in partial occlusion.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14. Object tracking with insufficient motion field and partial occlusion.
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